
Modernizing Parametric type design
A case study of Nupuram Malayalam typeface

Santhosh Thottingal, Swathanthra Malayalam Computing, santhosh.thottingal@gmail.com

Abstract: Parametric fonts are programatically defined fonts with variable parameters,

pioneered by Donald Kunth with his METAFONT(Knuth, 1979) technology in the 80s. How‐

ever, this approach has not gained widespread acceptance in mainstream type design due

to the perceived need for close collaboration between designers and programmers to de‐

fine the design mathematically. I explored the modernization of METAFONT based type de‐

sign. METAPOST(Hobby, 1994), a successor of METAFONT, that can generate vector out‐

puts, was used in this project. Mathematical descriptions of all the glyphs for Malayalam

and Latin script are prepared in METAPOST, compiled to UFO type source and used modern

font build tooling. The outcome of this endeavor is Nupuram, a versatile typeface super‐

family. Based on this experience, in this paper, I aim to present the technology, process,

challenges, and learnings.

Keywords: Parametric design, Variable fonts, Opentype, Color fonts, METAFONT, META‐

POST, Malayalam, Calligraphic font, Educational type design, Open source

1 Introduction

The contemporary type design process uses advanced graphical user interface(GUI) editors.

These editors not only facilitate the design aspect but also streamline the entire workflow

encompassing the creation of a fully functional typeface and its subsequent proofing. It is

worth noting that these GUI‐based tools often come at a substantial cost, are proprietary in

nature, and in some cases, are dependent on specific operating systems. However, the gen‐

esis of digital type design predates the advent of these GUI design tools. Donald Kunth in‐

troduced the concept of programatically defining the shapes of letters in 80s(Knuth, 1979).

Knuth approached the type design as a mathematical problem, positing that type design‐

ers could articulate mathematical definitions for letterforms. This paradigm, embodied in

the METAFONT program, failed to get widespread traction beyond Knuth’s own typefaces.

Knuth attributes this to the fact that “asking an artist to become enough of a mathemati‐

cian to understand how to write a font with 60 parameters is too much.”(Knuth, 1985). To‐

wards the latter part of the 1980s, GUI‐based type design tools began to ascend in popular‐

ity, eventually establishing themselves as the de facto method for type design.

Nevertheless, certain foundational concepts introduced by Knuth have persisted and evolved

over time. One such concept was the notion of generating multiple instances of a font by

manipulating key parameters, a concept now recognized as variable fonts, which have gar‐

nered considerable popularity in contemporary typography.

In light of the fact that typefaces have evolved into increasingly complex software entities

rather than mere digital renditions of calligraphic designs, the discipline of type design has

undergone a transformation into a branch of software engineering. This transformation has

necessitated that type designers either possess a working knowledge of software engineer‐

ing and mathematical principles or collaborate closely with individuals skilled in the realm

of ‘type engineering’.

As a professional with a background in software engineering who subsequently ventured

into the realm of type design, I embarked on an endeavor to revisit METAFONT and inte‐

grate it with the modern type design workflow. The Nupuram Malayalam typeface project

was born from this experiment. This paper serves as an exposition of the modernization ap‐

proach, results and lessons learned.

2 Parametric design

The fundamental premise of parametric design revolves around the notion that design out‐

comes are governed by explicitly defined parameters. Altering these parameters indepen‐

dently yields distinct outputs without necessitating a complete redesign. METAFONT is a

programming language that helps to define such designs.

2.1 METAFONT and METAPOST

Donald Knuth started work on font creation software in 1977, and produced the first ver‐

sion of METAFONT in 1979. Due to shortcomings in the original METAFONT language, Knuth

developed an entirely new METAFONT system in 1984, and it is this revised system that is

used today. The AMS Euler typeface was created by Hermann Zapf with the assistance of

Donald Knuth using METAFONT. Computer Modern is another typeface created using META‐

FONT. METAFONT produces bitmap fonts that can be embedded in PostScript documents.

METAPOST is a graphic programming language developed by John Hobby that allows its

user to produce high‐quality graphics. METAPOST produces vector graphics from a geomet‐

ric/algebraic description. The language shares METAFONT’s declarative syntax for manipu‐

lating lines, curves, points and geometric transformations. Unlike METAFONT, METAPOST

can produce SVG output.

Typography Day 2023 2

1 beginf ig (1) ;

2 s ide :=10;

3 draw (0 ,0) −− (side ,0) −− (side , s ide) − −(0 , s ide) −− (0 ,0) ;

4 endfig ;

Listing 1: METAPOST code to draw a square

Listing 1 is an example METAPOST program. It produces a square like this. Changing

the value of side to say, 20, draws the same square with bigger size like this: . Here

the side is a parameter to the design of square. By changing the value side, and without

any other modification to the design, we produce distinct renditions. This is the simplest

explanation of parametric design. Let us try to draw the Malayalam letter Ra.

1 beginf ig (0) ;

2 width :=100; height :=100;

3

4 z0 = (x1 + width /4 , 0) ;

5 z1 = (0 , y0 + height /2) ;

6 z2 = (x1 + width /2 , y1 + height /2) ;

7 z3 = (x2 + width /2 , y 1) ;

8 z4 = (x3 − width /4 , y 0) ;

9

10 pickup pencircle scaled 10;

11 draw z 0 . . z 1 . . z 2 . . z 3 . . z4;

12

13 % Add dots to ind icate the points

14 pickup pencircle scaled 4;

15 for i =0 upto 4:

16 draw z [i] withcolor red ;

17 endfor ;

18 endfig ;

19

Listing 2: METAPOST code to draw the

Malayalam letter Ra

From the program Listing 2, we can see that we are drawing along the 5 points z0 to z4 and

using curves to connect them. We are using a ‘pen’ called pencircle scaled 10 times. Pen‐

circle is just a circle and it will be moved along the curve and filled. There are width and

height that controls the sweep of the arc too. There are other predefined pens like ‘pen‐

square’.

2.2 The Pens

The concept of pens, also known as nibs are the powerful components of METAPOST. A pen

could be of any shape1. Let us use a pencircle, but deform it first by scaling 10 in x dimen‐

1Any convex polygon, to be precise.

Typography Day 2023 3

sion and 5 in y dimension.pickup pencircle xscaled 10 yscaled 5 makes it an elliptical

pen: Then if we move that pen along the same path, we get:

We can rotate this elliptical nib to an angle and use it as nib using pickup pencircle xscaled
10 yscaled 5 rotated 45. We get this nib: Now, if we draw the same shape using this

slanted nib, we get:

Let us attempt to define a broad nib calligraphy pen. They are straight lines without much

thickness(we can assume 0 thickness, or razors), held at an angle like 40◦or 45◦. It will look

like this: If we draw with this calligraphy pen we get:

As we saw from examples above, we were able to produce a varying number of strokes from

the simple pens defined. However, more complex character shapes, such as those found

in serif fonts, cannot be adequately represented using pen strokes alone. One approach is

to use a combination of different pens. Another approach is to draw the outlines directly

instead of using the outline created using pens.

Not only the type of pen, but the aspects of pens can also be parameterized. For example,

if we change the length of Calligraphic nib in previous example, we can generated the same

drawing with varying stroke width:

Typography Day 2023 4

This is particularly useful in type design to generate the weight variants like thin, light, reg‐

ular, bold, black etc. Since each of the drawing will have exact number of nodes, they are

easily interpolatable to generate a variable font with ‘weight’ axis.

2.3 The Curves

The draw command of METAPOST connects the points using straight lines or curves. The

points are defined by coordinates in the form of (x, y). Points connected using dots are

curves ... Points connected using -- are straight lines. --- connect a straight line and

curve with a smooth joint. So examples:

draw (0, 0) -- (20,0) --(20, 10) ⇒

draw (0, 0) .. (10,0) .. (20,0) ⇒

draw (0, 0) -- (10,0) .. (20,0) ⇒

draw (0, 0) --- (10,0) .. (20,0) ⇒

When METAPOST draws a smooth curve through a sequence of points, each pair of consec‐

utive points is connected by a cubic Bézier curve, which needs, in order to be determined,

two intermediate control points in addition to the end points. The points on the curved seg‐

ment from points p0 to p1 with post control point c0 and pre control point c1 are determined

by the formula

p(t) = (1−t)3p0 + 3(1−t)2tc0 + 3(1−t)t2c1 + t3p1

where t[0, 1]. METAPOST automatically calculates the control points such that the seg‐

ments have the same direction at the interior knots.

In the Figure below, the additional control points are drawn as green dots and connected

to their parent point with green line segments. The curve moves from the starting point

p0 in the direction of the post control point of p0, but bends after a while towards p1. The

further away the post control point is, the longer the curve keeps this direction. Similarly,

the curve arrives at a point coming from the direction of the pre control point. The further

away the pre control point is, the earlier the curve gets this direction. It is as if the control

points pull their parent point in a certain direction and the further away a control point is,

the stronger it pulls.

Typography Day 2023 5

1 beginf ig (1) ;

2 u := 2cm;

3 pair p [] ;

4 p0 = (0 ,0) ; p1 = (2u ,0) ; p2 =

(4u ,0) ;

5 path q; q := p0{ dir 90 } . . p 1 . . { dir

90}p2;

6 draw q withpen pencircle scaled 2

withcolor blue ;

7

8 for i =0 upto length (q) :

9 dotlabel . r t (”p” & decimal (i) ,

point i of q) ;

10 draw point i of q

11 withpen pencircle scaled 4

12 withcolor blue ;

13 p3 := precontrol i of q;

14 p4 := postcontrol i of q;

15 draw p3−−p4 withcolor green ;

16 draw p3 withpen pencircle

scaled 4 withcolor green ;

17 draw p4 withpen pencircle

scaled 4 withcolor green ;

18 endfor ;

19 endfig

20

p0 p1 p2

By default in METAPOST, the incoming and outgoing direction at a point on the curve are

the same so that the curve is smooth. The algorithm behind the curve smoothening in META‐

POST is developed by John D. Hobby.(Hobby, 1986)2. METAPOST allows the control points

to be specified directly in the following format:

draw (0,0)..controls (26.8,-1.8) and (51.4,14.6)..(60,40)

It is easy to adjust these control points in a GUI editor, but in METAPOST, we want to think

about only the curves. For this, METAPOST provides a mechanism to declare the direction,

tension and curl of the curves along with path expression.

draw (0, 0){dir 30}..{dir 45}(10, 10)..{right}(20, 0)..{dir 30}(30, 10) =

To illustrate how the direction specification changes the curves, let us plot curves with

varying directions as below:

2The hobby package with Tikz package of LATEXcan also create similar smooth cureves. Before developing the

METAPOST based workflow, I had attempted creating SVGs using Tikz, however abandoned because of various

reasons such as inflexible, SVG issues. https://ctan.math.illinois.edu/graphics/pgf/contrib/hobby/hobby.pdf

Typography Day 2023 6

1 beginf ig (0)

2 for a=0 upto 9:

3 draw (0 ,0) { dir 10a }

4 . . { dir −10a } (4cm, 0)

5 . . { dir 10a } (8cm, 0) withcolor blue ;

6 endfor

7 endfig ;

METAPOST also allows to specify the tension and curl of the curves. Since they are not

used in the Nupuram typeface and for brevity, we are skipping the explanation here.

2.4 SVGs from METAPOST

Latest version of METAPOST can output SVGs. The previous examples of rendering a glyph

with different pens might make us believe that we can directly use those SVGs for using it

in a font. However, a close inspection of the SVGs produced will disappoint us. Let us re‐

visit the ’Ra’ example:

In Figure 1a the white line is the path we defined and drew. The think black line along that

path is just the stroke width of the path. So this is an SVG with just 5 nodes. This is not an

SVG we can use for type design. In a glyph, we need a closed outline. Our expected draw‐

ing should be as shown in Figure 1b:

While designing fonts with METAFONT Knuth outlines(Knuth, 1989) a method for ‘envelope’

calculation. Internally, in METAFONT all the pencircle are approximated a convex polygon

with 24 sides. Then this polygon is used just like pensquare(that has 4 sides). Then the out‐

lines of the polygon pen is calculated to get the ‘envelope’ or outline stroke. This works

well for the METAFONT since it outputs bitmaps. But for METAPOST since the output is

a vector image, and since we want the SVG a very clean vector with very minimal nodes,

this solution has issues as we see in as shown in Figure 1c. It produces several unwanted

(a) 11Expected SVG for use in

a typeface

(b) SVG output from pencircle

method

(c) Envelope(outline stroke) cal‐

culated from a convex poly‐

gon pen

Figure 1: Comparison of SVGs produced by METAPOST

Typography Day 2023 7

nodes and they are unpredictable when the parameters like width/height etc changed. We

resolved this issues by using the macros provided by MetaType package.

2.5 MetaType

MetaType is a tool created by Bogusław Jackowski, Janusz Nowacki, and Piotr Strzelczyk for

creating PostScript Type 13 fonts(law Jackowski et al., 2001). MetaType was used to create

the Latin Modern fonts, derived from Computer Modern fonts but including many more ac‐

cented characters(law Jackowski and Nowacki, 2003). Most important fonts produced with

MetaType1 are: Latin Modern, Latin Modern Math, TeX Gyre, Antykwa Toruńska, Antykwa

Półtawskiego, Kurier and Iwona.

Even though we are not generating any PostScript fonts here, MetaType was very crucial in

the development of workflow. The utility library as part of MetaType include many macros

to produce accurate pen envelopes suitable for typefaces.

Nupuram project extensively used macro pen_stroke defined in MetaType. Macro pen_stroke

performs an operation known as “expanding stroke”; we’ll call the result of the operation a

“pen envelope” (for a given path). The macro has one optional parameter, opts (text), and

two obligatory ones: input path p (expr) and a result (suffix). A user has an access to sub‐

paths of the envelope, namely: resultr is the right edge of the envelope, resultl—its left

edge, resultb—is a fragment of the pen outline joining left and right edge of the envelope

at the beginning node of the path, resulte—is a similar fragment at the ending node of the

path (see the picture below). If the path p is cyclic, then resulte and resultb are undefined,

otherwise the variable result contains additionally the complete expanded stroke.
resultl

resultr

resultb resulte

p

For finding an envelope, a default path (default_nib, returned by fix_nib) is used except

nodes for which the parameter opts sets another pen. Mastering the usage of the param‐

eter opts allows a user to achieve nontrivial effects. The parameter opts is a list (space‐

separated or semicolon‐separated) of the following operators: (1) nib, (2) cut, (3) tip, and

(4) ignore_directions.

The macro nib has two parameters: nib(pen)(list_of_nodes), where ‘pen’ is a path returned

by macro fix_nib, and ‘list_of_nodes’ contains comma‐separated numbers (times) of the

nodes of the path p at which a given pen is to be used.

3Type 1 fonts are a legacy format created by Adobe in 1984

Typography Day 2023 8

To illustrate this, let us revisit the same arc examples. As shown below, by using the pen_stroke

macro and using different pens at different nodes in the path, we get a perfect vector out‐

put. We can see the the arc is drawn using 5 points. And corresponding to each each node,

2 nodes are present in the outline stroke, on outer and inner side of outline stroke. De‐

pending on the pen thickness at each node, we get smooth curves that varies the thickness.

The resulting stroke modulation, its extrapolatable nature with respect to the parameters

like nib thickness are the key tools to build a typeface, potentially a variable typeface. The

terminals can be a cut at any angle or any nib at any angle or width. Each nodes in the path

can be any nib at any width, shape and angle.

1 input plain_ex ;

2 beginf ig (0) ;

3 width :=200; height :=200;

4 th ick :=width /5; th in := th ick*2/3;
5 % . . path def in i t i on goes here . .

6 path p , s ; p := z 0 . . z 1 . . z 2 . . z 3 . . z4;

7

8 vardef th ickn ib = f i x_n ib (thick , 0 , 0)

enddef ;

9 vardef th inn ib = f i x_n ib (thin , 0 , 0)

enddef ;

10 pen_stroke (

11 cut (th innib , 45) (0)

12 nib (th inn ib scaled 1.2 rotated

−10) (1)

13 nib (th i ckn ib rotated 80) (2)

14 nib (th i ckn ib rotated 10) (3)

15 cut (th inn ib scaled 1.25 , re l 90)

(4)

16) (p) (s) ;

17 draw s withpen pencircle scaled 1;

18 f i l l s withcolor .8white ;

19 endfig ;

20

Listing 3: Usage of pen_stroke macro.

3 Earlier attempts

Although METAFONT never became mainstream, hundreds of fonts have been created with

it: an incredible list has been compiled by Luc Devroye4.

Jeroen Hellingman created Malayalam metafonts in 1994 (Hellingman, 1998). These were

created as uniform strokes. Karel Piska later converted all these fonts to Type1 fonts. He

4List of fonts created using METAFONT. Compiled by Luc Devroye. http://luc.devroye.org/metafont.html

Typography Day 2023 9

did this by an accurate analytic conversion to outlines using METAPOST output. After the‐

oretical conversion, the FontForge is used for removing overlap, simplification, rounding to

integer, autohinting, generating outline fonts, and necessary manual modifications.5

4 Modern typeface design workflow with METAPOST

As we explained earlier, the first step is to define the glyphs using METAPOST. Then we

compile them to SVGs. These SVGs are then converted to glif format of Unified Font Object

format6. The Unified Font Object (UFO) is a cross‐platform, cross‐application, human read‐

able, future proof format for storing font data. This is the modern format used by type‐

designers. Type design tools offer a feature to export their internal format to UFO too7.

Once we have UFO formatted font source, we need to write the Opentype features and

save it as part of same UFO file. Then type compiling tools like fontmake8 can compile this

UFO to a font binary such as .ttf, .otf or webfonts. The opentype features, glyph to unicode

mapping, kerning and font meta information ‐ these are all part of the prepared UFO. A set

of programs prepares all of these based on a simple configuration file.

Preparing the opentype features used to be a major task for typeface design for Malayalam.

We used to manually write them. In Nupuram typeface they are automatically generated

based on the script grammar encoded in application logic.9. For a script Malayalam, Open‐

type rules are integral part of typeface. Rapid experimentation and variation generation

with Nupuram was possible because of auto‐generation of opentype rules.

Figure 2: Highlevel workflow of type design with METAPOST

5CTAN: indic‐type1 – Indic Type 1 fonts converted from public METAFONT sources https://c‐

tan.org/pkg/indic‐type1
6https://unifiedfontobject.org/versions/ufo3/
7For example, Glyphs application’s .glyphs format can be converted to ufo format.
8fontmake : https://github.com/googlefonts/fontmake
9Source code repository of Nupuram https://gitlab.com/smc/fonts/Nupuram

Typography Day 2023 10

Figure 3: Vilakkum Velichavum title design by SA Nair.

5 Nupuram Type Family

5.1 Design

Nupuram10 draws the inpiration from the title posters of early Malayalam movies around

1960‐1970, particularly those crafted by the renowned title designer, S Appukkuttan Nair(Pop‐

ularly known as SA Nair)11. These title designs features letterforms with wide, flat, sharp

terminals, thin vertical strokes and thick horizontal strokes.12. Even though there are hun‐

dreds of posters done by SA Nair with same design concept, there is no strict uniformity in

these designs due to their entirely handmade nature. Adpating these distinctive traits to

a typeface required many customization. In this endeavor, while I departed from the pro‐

nounced sharpness of the terminals, I preserved the broad strokes while slightly reducing

their thickness.

The vertical stems in glyphs are thin and horizontal ones are thick, akin to the characteris‐

tics of reverse contrast typefaces. The letters are close to handwritten style than a regular

print style. One can easily notice the playfull, casual, personal aesthetic. Usable at display

and text sizes too.

Based on the macros we explained in Section 2.5, the nibs of Nupuram glyphs are defined.

There are three 3 nibs ‐ thicknib, thinnib and terminalnib. Here, thicknib, thinnib are ra‐

zors nibs or nibs with 0 width. Their lengths are parameterized. terminalnib is a razor nib

or an elliptical nib based on whether terminal are rounded(soft) or flat(sharp).

10The word Nupuram means ‘anklet’ https://en.wikipedia.org/wiki/Anklet
11SA Nair, Malayalam Movie and Music Database https://m3db.com/sa‐nair
12Examples: Thakilu Kottampuram(https://m3db.com/film/thakilu‐kottampuram), Vilakkum Velichavum

(https://m3db.com/film/vilakkum‐velichavum), Angadi(https://m3db.com/film/angadi)

Typography Day 2023 11

Figure 4: Nupuram design

5.2 Typographic units

The nib length(that results the thickness of strokes) is defined by thick and thin configu‐

ration. The value thick is expressed in relationship with EM Size. the emsize is defined as

em := 1000. Then this Em value is divided to basic typography units, defined as u := em/10.

The u is the unit we will use to define all typographic parameters such as ascent, descent,

bearing, thick, thin etc.

1 em := 1000; % Height of characters − Em square

2 u := em/10; % Unit width . Em square d i v i s i o n s .

3 ascent := 8u ; % Ascender Height

4 descent := 2u ; % Descender Height

5 xheight := 2/3*ascent ; % Height of Eng l i sh small l e t te r s

6 mheight := 3/4*ascent ; % Height of Malayalam le t te r s

7 Xheight := 8u ; % Height of Eng l i sh cap i ta l l e t te r s

8 th ick := 1u ; % Thickness of th i ckes t l i ne s

9 th in := 0.7; % Thickness of thinnest l ines − rat io of th ick .

10 subth ick := 0.666u ; % Thickness of th i ckes t l i ne s in subscr ibed

characters

11 xth ick := 1; % Extra th ickness for terminals

12 s l an t := 0; % Slant of characters . Give angle values

13 condense := 1; % Condense factor . < 1 for condense , > 1 for

expand

14 l bear ing := 0.4u ; % Default l e f t bearing

15 rbear ing := 0.4u ; % Default r i ght bearing

16

Listing 4: Basic typographic parameters defined in Nupuram typeface

By changing any of these base parameters we can build a new design. But not all changes

produce a good or useful design. To make a typeface with weight variants, we change the

thick parameter alone. To change the extra thickness of terminals we change the xthick

parameter. To get a slanted glyph with 15◦, we give slant = 15 and so on. We will discuss

this in detail in next section about variable fonts.

Using all these parameters let us try to draw the letter ’Ra’, but this time as per the Nupu‐

ram design. See Listing 5

Typography Day 2023 12

1 input plain_ex ;

2 beginf ig (0) ;

3 width :=200; height :=200; th ick :=width /5;

4 th in :=0 .7 ; m:=width ; xth ick :=1 .1 ;

5 terminalround :=0 .5 ;

6 z0=(x1 + m/4 , 0) ; z1=(0 , m/2) ;

7 z2=(x0 + m/3 , y1 + m/2) ; z3=(x2 + m/3 , y2−m/2) ;

8 z4=(x2 , 0) ;

9 path p , s ; p:=z0{ dir 135} . . z 1 . . z2{ r i ght } . . z3{ dir

260} . . z4;

10

11 vardef th ickn ib = f i x_n ib (thick , thick , 0) enddef ;

12 vardef th inn ib = f i x_n ib (th ick* thin , th ick* thin ,

0) enddef ;

13 vardef terminaln ib = f i x_n ib (th ick*xthick , th ick*
terminalround , 0) xyscaled (xthick ,

terminalround) enddef ;

14 vardef terminalangle expr t of p = angle (direct ion

t of p) +90 enddef ;

15 pen_stroke (

16 nib (th inn ib) (1 ,3) nib (th ickn ib) (2)

17 nib (terminaln ib rotated terminalangle 0 of p)

(0)

18 nib (terminaln ib rotated terminalangle 4 of p)

(4)

19) (p) (s) ;

20 draw s ; f i l l s ;

21 endfig ;

22

Listing 5: The ‘Ra’ letter in Nupuram.

5.3 Variable fonts

The glyphs and their variations are fully controllable by simple configurations files. On top

of this common configurations, we define font specific variations in simple configuration

files. For example, the configuration for creating Nupuram‐Bold font will look like this

1 input ./ conf ig /Regular ;

2 th ick := 1.25u ;

3

It imports(includes) the Regular configuration and set thick = 1.25u. You will quickly see

that it is an increase on the thick value set in the configuration for ‘Regular’ variant

Typography Day 2023 13

1 th ick := 0.90u ;

2 soften := 0;

3

Let us look at configuration for Nupuram Thin variant by setting thick = 0.5u.

1 input ./ conf ig /Regular ;

2 th ick := 0.5u ;

3

Similarly, the configuration for Nupuram Condensed is defined by setting condense := 0.8

1 input ./ conf ig /Regular ;

2 condense := 0.8;

3

An oblique variant will have the following configuration slant := 15

1 input ./ conf ig /Regular ;

2 s l an t :=15; % Degree of s l ant ing

3

Whether the terminals are flat(sharp edge) or rounded(smooth) is controlled by the terminalnib

that uses terminalround parameters. By setting it terminalround := 0.15 we can get sharp

terminal.13

1 input ./ conf ig /Regular ;

2 terminalround :=0.15;

3

Since all of the above variants are same design, with exact number of SVG nodes and same

curves, they are interpolatable. We can use them as master designs in a variable fonts de‐

signspace and get a variable font with ‘weight’, ‘width’, ‘slant’ and ‘soft’ axis.

All the 4 axes can be considered as a 4 dimensional space. By carefully choosing the values

of any of these 4 axis, we can practically produce infinite styles. Modern tyepsetting soft‐

wares, Web pages(CSS) allow selecting this style by quick previews. Even though a user can

13Note that we are not setting it to 0 because, at zero the curve segment at terminal becomes a straight

line. This affects the interpolation. We can only do interpolation of curve with another curve with more or less

curl

Typography Day 2023 14

Table 1: Nupuram variation axis tags, their ranges, default, and descriptions

Axis Tag Range Default Description

Weight wght 100 to 900 400 Thin to Black. Can be defined with font-
weight CSS property.

Slant slnt ‐15 to 0 0 Upright (0◦) to Slanted (about 15◦).

Width wdth 75 to 125 100 Condensed to Expanded. Can be defined

with usual font-stretch CSS property.

Soft SOFT 0 to 100 50 Sharp to normal to SuperSoft terminals.

Figure 5: Visualization of Nupuram wght axis. The thickness of strokes varies here.

choose any of these styles, the typeface also comes with a predefined ‘named instances’

which are predefined combination of these values. For example, ‘Nupuram Condensed Thin’

is a named instance that choose ‘width’ and ‘weight’ axis value as ‘Condensed’ and ‘Thin’.

Nupuram has 32 such named instances.

Nupuram is the first variable font in Malayalam with 4 design axes.

5.4 Debugging and proofing

Advanced GUI based font editors usually has advanced preview and proofing systems inte‐

grated. This is also an essential requirement for any type design system. While designing

Nupuram, I used Visual Studio programming IDE along with live preview of SVGs. Figure 8

shows an example setup. In development mode, on top of the glyphs, guidelines, coordi‐

nates, points are also visualized to help the design process.

Typography Day 2023 15

Figure 6: Visualization of Nupuram slnt axis. The slant angle changes from 0◦to ‐15◦.

Figure 7: Visualization of Nupuram SOFT axis. The sharpness or softness varies from 0 to 100

Typography Day 2023 16

Figure 8: An example typedesign setup with VS Code IDE with METAPOST and SVG gener‐

ated shown side by side. Changing the code automatically refreshes the image.

However, we also need more advanced proofing system to render an arbitrary text content

with the given font to evaluate and fine tune various design aspects. For this, I developed a

webbased type test and preview system14. See Figure 9

To ensure the quality of glyphs and various technical details to be taken care for a produc‐

tion ready typeface, automatic testing is incorporated using fontbakery tool15.

5.5 Latin glyphs

All the Malayalam characters defined in Unicode version 15 are present in the font. Nupu‐

ram also has latin script support. Nupuram supports 294 languages covering approximately

2.8B speakers16

The latin glyphs follow the same design of Malayalam. See Figure 10

5.6 Nupuram Calligraphy

Nupuram Calligraphy simulates a wide nib Calligraphy pen with nib rotation at 40◦. This is a

variable font with ‘weight’ axis. The width of the calligraphy pen can be varied for getting

different weights. The width of the nib can be varied as required. So by defining 3 widths,

narrow, medium, wide, we can get 3 variants of this glyph. Using these master glyphs, we

14This online tool is available at https://smc.gitlab.io/fonts/Nupuram/tests/
15fontbakery: A font quality assurance tool https://github.com/fonttools/fontbakery
16Calculated using hyperglot tool https://hyperglot.rosettatype.com/

Typography Day 2023 17

Figure 9: web based type testing, proofing, playground used in the Nupuram design process

Figure 10: Nupuram English sample

Figure 11: Nupuram sample English paragraph

Typography Day 2023 18

Figure 12: Weight axis variations of Nupuram Calligraphy subfamily

Figure 13: Nupuram Calligraphy sample

can interpolate to any nib size using the variable font technology. That is how we made

Nupurum Calligrapy variable font. An illustration of weight axis variations is given in Figure

12

5.7 Nupuram Color

Color fonts (also known as chromatic fonts) can use multiple colors, including gradients, in

a single glyph, rather than the flat, single color used by typical, non‐color (monochromatic)

fonts. This relatively new technology allows designers to set the color palette within the

font to express themselves with color in a way that would previously not be possible outside

of advanced graphics applications. 17. Nupuram has a Color font version with COLRv1 spec‐

ification. The colors can be customized by users, for example using CSS. Nupuram Color is

also a variable font with customizable ‘wght’ axis.

Nupuram Color creates a solid 3D objects illusion. The anatomy of color font is based on

an observation in Nupuram Calligraphy. In the calligraphy variant, we moved a calligraphic

17Introducing color fonts, Rod Sheeter https://fonts.google.com/knowledge/introducing_type/introduc‐

ing_color_fonts

Typography Day 2023 19

Figure 14: Sample rendering of Nupuram color font with default color palette

pen through the glyph path. If we use pen strokes with thick and thin strokes as explained

earlier, we get a modulated glyph outline as Figure 15a. If the calligraphic pen we used for

Nupuram Calligraphy is move through the outline, we will get Figure 15b

It is slightly confusing drawing, but we start to see a 3D shape in it. Let us fill this with

color blue to get a better picture. See Figure 15c. Now we can relate this with the callig‐

raphy glyph we constructed earlier. Same stroke modulation, but two times ‐ for outer and

inner lines.

If we look at 15c carefully, this is a 3D structure, but a hollow one. The facing size and

backside is void, creating a hollow structure. To get a solid 3d shape, let us take the en‐

velope of the whole drawing. What I mean by that is, to take the outline of this structure.

See Figure 15d

Now it is not hollow. If you look carefully, you will see it is a 3D letter of ’va’. But to help

your eyes for the 3D perspective it need colors, or lighting to get the depth perspective.

To start with let us place our original ‘va’ outline on top of it in a lighter color. And Let us

make the lighting and coloring a bit more realistic by using color gradients. We get the final

rendering as Figure 15f

Nupuram Color font gives 18 predefined pallettes that can be selected by users. Or a user

can specify the colors using CSS for example. This color font uses 3 colors for its shadow‐ish

look. They are Dark, Light, Base colors. Base is the facing color, Light is the central glowing

area color. Dark is the color for the shadow part. The colors are used to create a gradient

internally.

Nupuram is the first color font in Malayalam.

Typography Day 2023 20

(a) Letter ’va’ with pen stroke and outlines. (b) Moving calligraphy nib along the outline

(c) Figure 15c filled with color. (d) Envelope of Figure 15c

(e) Nupuram regular placed on top of Figure

15d

(f) Color gradients applied on Figure 15e. Final

rendering.

Figure 15: Construction of Nupuram Color glyph

Typography Day 2023 21

Figure 16: Nupuram Dots ‐ an font for learning to write.

Each glyph in Nupuram color is constructed by two layers. The facing layer is Nupuram Reg‐

ular. The background layer is constructed using the techniques explained above. Then each

of these layered glyphs are compiles to a UFO. For each layer we define a linear gradient

from top to middle and then reflect vertically. By chosing related colors for the gradients

in front and background layers, we get the illusion of a 3D object illuminated. This kind of

sophisticated glyph manipulation and generation of layers was possible because of META‐

POST’s easy experimentation and variant generation. Drawing each of these glyphs by hand

in a GUI environment would be quite tiresome and would take months of effort.

5.8 Nupuram Dots and Arrows

Since a pen could be any shape that can over a predefined path, one experiment I did in

Nupuram is to produce a variant where the paths are filled with equally placed dots. We

get a dotted font, often used in educational context ‐ to learn how to write a letter by

writing on top of it. We call this variant Nupuram Dots. See Figure 16

I tried to replace dots with arrows to indicate the writing direction. These arrows are equally

placed on the pen path. See Figure 17a. To make it more useful, I placed the arrows font

on top of the regular font. And gave two colors for each layer making it a color font. This

color can be customized at user side like we explained in the section about Nupuram color.

See Figure 17b

Special fonts like dot fonts play a valuable role in facilitating the process of learning to

write letters, especially for young learners and those with fine motor skill challenges. By

tracing arrows or connecting the dots, students develop muscle memory and hand‐eye co‐

ordination necessary for proper letter formation. Dot fonts are particularly popular in early

childhood education, where they help children transition from drawing shapes to writing

letters.

Developing a dots or arrow font like this is a full‐blown typeface project in common type‐

face design approach. Here, we see that it is a quick derivation of an existing typeface.

Typography Day 2023 22

(a) Nupuram Arrows ‐ Showing writing direc‐

tion

(b) Nupuram arrows color font with default color

palette.

Figure 17: Nupuram Arrows

6 Lessons

Parametric approach helped me to do easy experimentation. Traditional typedesign ap‐

proach is not flexible once the key typographic metrics are fixed. In METAPOST based ap‐

proach, finetuning these parameters is possible at any stage of the project. It is very easy

to experiment with different parameters and pick one that is satisfactory to the designer.

Sometimes these experiments also reveals surprising results. The approach for 3D like color

font was born from such an experiment.

Leveraging my background as a software engineer, adept at working with source code, I

found that applying this familiar paradigm to type design significantly enhanced productiv‐

ity.Shapes were manipulated as modularized methods within the source code, and this mod‐

ular approach proved instrumental in generating design outputs that were not only consis‐

tent but also coherent. This marked a notable departure from the challenges I had encoun‐

tered in traditional typeface design projects in the past, where maintaining consistency and

cohesiveness had often been a struggle.

Producing a superfamily of Malayalam typeface with multiple variable and color fonts can

easily take multiple years of effort, and the collaboration of multiple individuals. However

majority of Nupuram’s work was finished in my free time in 6 months.

Capturing the details of all required glyphs and their opentype features in program was not

an easy task, but that is an investment for future fonts. I could reuse most of the META‐

POST code and the framework in a new typeface project18.

The ability to define the design precisely in mathematical language will guide the designer

for stringent mathematical proportions for letterforms. Nevertheless, it is essential to rec‐

ognize that such precision does not inherently guarantee the production of aesthetically

pleasing glyphs. This tension between mathematical precision and aesthetic appeal emerged

as a recurring theme throughout my type design process. For example, the programmer’s

18Malini is a new typeface project that the author working on with METAPOST based workflow

https://github.com/smc/malini

Typography Day 2023 23

inclination to align an element exactly at the 0.5 mark of the entire width versus the more

subjective choice of proportions that align with visual harmony and appeal.

The ability to swiftly generate variations and, consequently, produce variable fonts proved

to be a significant advantage in my work. As an advocate of free and open‐source princi‐

ples, my objective was to construct the entire type design workflow and develop typefaces

without relying on proprietary software. Notably, at the time, there was a lack of reliable

free software tools for typeface design tailored to the creation of variable fonts. I over‐

came that limitation with this new workflow. Nupuram is one of the early color fonts after

publishing opentype colrv1 specification. It is worth noting that the support for variable

and color fonts are yet to catchup in common software application people use.

It is tempting to proliferate numerous subfamilies from a single typeface due to the ease

of doing so. In this regard, it is pertinent to recall Knuth’s cautionary advice regarding this

issue. In the Nupuram project, driven by a desire to explore the myriad possibilities, I did

create numerous subfamilies. Nevertheless, it remains a verifiable fact that an abundance

of variations does not necessarily equate to an abundance of genuinely useful fonts.

I must acknowledge that METAPOST is not a programming language one can easily learn. It

diverges significantly from the conventions of popular programming languages, presenting a

distinctive learning curve. While valuable documentation resources do exist, there is a no‐

ticeable dearth of practical examples that designers can readily reference and learn from.

Given this challenge, prior to advocating for the adoption of this workflow among fellow

type designers, I recognized the need to address this limitation. So I documented Nupuram

extensively. The project is published in free and opensource license for anybody to refer

and learn19. I created a simple METAPOST playground website mpost.thottingal.in where

people can quickly write METAPOST code and preview the result. I started a repository of

various type design concepts illustrated using METAPOST
20.

Upon embarking on this exploration using METAPOST, I encountered several articles outlin‐

ing why METAPOST or METAFONT did not catchup. A recurring theme in these discussions

was the debate over whether an arbitrary typedesign can be expressed by the pen based

approach where outlines are essentially the outputs of pen strokes. It is undeniable that

outline‐based design has established itself as a tried‐and‐true, successful design method‐

ology, and this criticism is indeed grounded in validity. However, I contend that there is no

inherent necessity for the exclusive use of pen‐based design in every aspect of glyph cre‐

ation. Whether it manifests as a stroke path or an outline, it essentially boils down to an

array of coordinates from my perspective. The manipulation of arrays is a skill that I have

honed as a programmer. For example, The serif shape for a latin letter cannot be created

using the outlines of a pen. But nothing prevents a METAPOST programmer to quickly draw

that outline without a pen definition.

19Nupuram source code repository: https://github.com/smc/nupuram. Licensed under SIL Open Font Li‐

cense, Version 1.1
20Typeface design concepts illustrated using METAPOST https://github.com/santhoshtr/type‐concepts

Typography Day 2023 24

7 Conclusion

In this paper, I have provided an exhaustive exposition of the parametric type design method‐

ology, using the Nupuram typeface as an illustrative example. Moreover, I elaborated the

lessons learned. While this new approach enabled me to create a typeface with many fea‐

tures hitherto deemed unattainable, it is important to underscore that I am not proposing

it as a replacement for the existing type design workflow. The approach outlined here is

suitable for designers who possess proficiency in software engineering. As typefaces are be‐

coming sophisticated software these days, I am hopeful that this approach will find utility

among a broader spectrum of designers. Furthermore, I aspire to see the Nupuram type‐

face, born from this exploration, become a valuable asset for a diverse community of users.

References

Jeroen Hellingman. Malayalam fonts. CTAN: language/malayalam, 1998.

John D Hobby. Smooth, easy to compute interpolating splines. Discrete & computational

geometry, 1(2):123–140, 1986.

John D Hobby. A user’s manual for metapost. at&t bell laboratories. Computing Science

Technical Report, 162, 1994.

Donald E Knuth. TEX and METAFONT: New Directions in Typesetting. American Mathematical

Society, USA, 1979. ISBN 0932376029.

Donald E Knuth. Lessons learned from metafont. Visible Language, 19(1):35, 1985.

Donald E Knuth. The METAFONT book. Addison‐Wesley Longman Publishing Co., Inc., 1989.

Bogus law Jackowski and Janusz M Nowacki. Latin modern: Enhancing computer modern

with accents, accents, accents. TUGBoat: Proceedings of the 2003 Annual Meeting, 24,

2003.

Bogus law Jackowski, Janusz M Nowacki, and Piotr Strzelczyk. Metatype1: A metapost‐based

engine for generating type 1 fonts. Proc. of EuroTEX, pages 111–119, 2001.

Typography Day 2023 25

	Introduction
	Parametric design
	Metafont and Metapost
	The Pens
	The Curves
	SVGs from Metapost
	MetaType

	Earlier attempts
	Modern typeface design workflow with Metapost
	Nupuram Type Family
	Design
	Typographic units
	Variable fonts
	Debugging and proofing
	Latin glyphs
	Nupuram Calligraphy
	Nupuram Color
	Nupuram Dots and Arrows

	Lessons
	Conclusion

